MNP01/trainer.cpp
2018-03-18 21:31:48 +01:00

139 lines
4.4 KiB
C++

#include <iostream>
#include <functional>
#include <math.h>
#include <typeinfo>
#include <random>
#include <ctime>
#include <algorithm>
#include <fstream>
#include <vector>
#include <map>
#include "argh.h"
#include "matrix.h"
#include "network.h"
#include "decider.h"
#include "trainer.h"
#include "common.h"
int main(int argc, char* argv[])
{
argh::parser args;
args.add_params({"-m", "--money"});
args.add_params({"-s", "--stock"});
args.add_params({"-p", "--population"});
args.add_params({"-n", "--iterations"});
args.add_params({"-o", "--output-dir"});
args.add_params({"-s", "--samples"});
args.parse(argc, argv);
double money;
unsigned stock, population, iterations, sampling;
std::string input_file, output_dir;
args({ "m", "money" }, 1000.) >> money;
args({ "s", "stock" }, 1000) >> stock;
args({ "p", "population" }, 25) >> population;
args({ "n", "iterations" }, 4) >> iterations;
args({ "s", "samples" }, 0) >> sampling;
args({ "o", "output-dir" }, "") >> output_dir;
std::uniform_real_distribution<double> distribution(-2.0, 2.0);
std::uniform_real_distribution<double> bias_distribution(-16.0, 16.0);
std::random_device rd;
std::mt19937 random_engine(rd());
std::function<double(const int&, const int&)> randomizer = [&](const int&, const int&) -> double {
return distribution(random_engine);
};
std::function<double(const int&, const int&)> bias_randomizer = [&](const int&, const int&) -> double {
return distribution(random_engine);
};
std::function<double(const double&)> normalizer = [](const double& result) -> double { return erf(result); };
std::function<current_decider ()> factory = [&]() -> current_decider {
current_decider decider(normalizer);
decider.network.fill(randomizer, bias_randomizer);
return decider;
};
trainer<current_decider> train(money, stock, population, factory);
std::fstream input;
std::map<std::string, trainer<current_decider>::dataset> datasets;
for (auto it = args.begin() + 1; it != args.end(); it++) {
std::string filename = *it;
std::ifstream file;
file.open(filename);
if (!file.is_open()) continue;
trainer<current_decider>::dataset set;
double price;
while (file >> price) set.push_back(price);
datasets[filename] = set;
if (sampling) {
trainer<current_decider>::dataset sample;
int i = 1;
for(double price : set) {
sample.push_back(price);
if (i % sampling == 0) {
std::stringstream stream;
stream << filename << "-" << i;
datasets[stream.str()] = sample;
sample = trainer<current_decider>::dataset();
std::cout << "Probka " << stream.str() << std::endl;
}
i++;
}
}
file.close();
std::cout << "Zaladowano zestaw testowy " << filename << " z " << set.size() << " wartosciami." << std::endl;
}
if (datasets.size() == 0) {
std::cout << "Brak poprawnie zaladowanych zestawow testowych." << std::endl;
return -1;
}
std::cout << "generation,score_med,score_high,profit_med,profit_high,best" << std::endl;
while (train.generation <= iterations) {
train.evolve();
for (auto pair : datasets) {
train.train(pair.second, pair.first);
}
train.sort();
std::cout
<< train.generation << ","
<< train.population()[population / 2]->score << ","
<< train.population()[0]->score << ","
<< train.population()[population / 2]->profit << ","
<< train.population()[0]->profit << ","
<< train.population()[0]->id
<< std::endl;
}
if (!output_dir.empty()) {
int i = 0;
for (auto trained : train.population()) {
std::stringstream stream;
stream << output_dir << ++i << ".net";
std::string filename = stream.str();
std::cout << "Zapisuje siec #" << trained->id << " do pliku " << filename << std::endl;
std::ofstream file(filename, std::ios::out | std::ios::binary);
trained->decider.save(file);
file.close();
}
}
}