MNP01/trainer.h
2018-03-11 22:02:38 +01:00

217 lines
6.2 KiB
C++

#include <vector>
#include <random>
#include <ctime>
#include <functional>
#include <iostream>
#include <algorithm>
#include <memory>
template<class T>
struct trained {
unsigned int id;
T decider;
double monies;
unsigned stock;
double wealth;
void recalculate(double price)
{
wealth = monies + stock*price;
}
double score;
};
template <class T>
class trainer {
std::vector<std::shared_ptr<trained<T>>> trainees;
std::function<T()> factory;
unsigned int id;
std::default_random_engine random_engine;
std::size_t n;
public:
double money;
unsigned stock;
std::function<double(std::shared_ptr<trained<T>> x)> q;
trainer(double money, unsigned stock, std::size_t n, std::function<T()> factory)
: factory(factory), id(0), money(money), stock(stock), n(n),
q([](std::shared_ptr<trained<T>> x){ return x->wealth; }), random_engine(std::time(0))
{
add(n);
}
void add(std::size_t n, std::function<T()> factory)
{
for(std::size_t i = 0; i < n; i++) {
add(factory());
}
}
void add(std::size_t n)
{
add(n, factory);
}
void add(const T& decider)
{
auto trainee = std::make_shared<trained<T>>();
trainee->id = ++id;
trainee->decider = decider;
trainees.push_back(trainee);
}
int train(std::shared_ptr<trained<T>> trainee, double price)
{
auto decision = trainee->decider.decide(price, trainee->monies, trainee->stock);
auto current = price*trainee->stock + trainee->monies;
auto max_credit = std::max(current * 0.05, -1e4);
/* std::cout << "D: " << decision << " C: " << current << " P: " << price << " MC: " << max_credit << std::endl; */
if (decision > 0 && trainee->monies - decision*price < -max_credit) {
decision = floor((trainee->monies + max_credit) / price);
}
if (decision < 0 && -decision > trainee->stock) {
decision = -trainee->stock;
}
trainee->stock += decision;
trainee->monies -= price*decision;
trainee->recalculate(price);
return decision;
}
void test(std::istream& input)
{
for (auto trainee : trainees) {
trainee->monies = money;
trainee->stock = stock;
trainee->decider.start_money = money;
trainee->decider.start_stock = stock;
trainee->decider.reset();
}
double price, start;
input >> price;
start = price*stock + money;
do {
for (auto trainee : trainees) {
train(trainee, price);
}
} while (input >> price);
auto hodl = price * stock + money;
std::cout << "Zakonczono testy " << trainees.size() << " przypadkow." << std::endl;
std::cout << "HODL: " << hodl << " START: " << start << std::endl;
std::cout << "-----------------------" << std::endl;
normalize();
for (auto trainee : trainees) {
std::cout
<< "#" << trainee->id << ": " << trainee->wealth
<< " [" << trainee->wealth - hodl << "] (" << trainee->score << ") "
<< trainee->stock << " akcji, "
<< trainee->monies << " gelda w banku. " << std::endl;
}
filter();
breed();
}
void normalize()
{
std::sort(trainees.begin(), trainees.end(), [=](std::shared_ptr<trained<T>> a, std::shared_ptr<trained<T>> b){
return q(a) > q(b);
});
auto high = q(*trainees.begin());
auto low = q(*(trainees.end() - 1));
// best = 1, worst = 0
for (auto t : trainees) {
t->score = (q(t) - low) / (high - low);
};
}
void filter()
{
/* static std::exponential_distribution<double> distribution(0.50); */
/* auto random = [=](){ return 1. - std::clamp(0., distribution(random_engine), 2.)/2.1; }; */
/* auto iterator = std::remove_if(trainees.begin(), trainees.end(), [=](std::shared_ptr<trained<T>> t) { */
/* return random() > t->score; */
/* }); */
trainees.erase(trainees.begin() + 49, trainees.end());
std::cout << "Przy życiu pozostają: ";
for (auto trainee : trainees) {
std::cout << "#" << trainee->id << " ";
}
std::cout << std::endl;
}
void breed()
{
std::size_t diff = n - trainees.size();
std::cout << "---------------------------------------" << std::endl;
std::cout << "W populacji brakuje " << diff << " sieci, aktualnie " << trainees.size() << "." << std::endl;
std::vector<double> probability;
for (auto t : trainees) {
probability.push_back(t->score);
}
std::discrete_distribution<unsigned> distribution(probability.begin(), probability.end());
std::exponential_distribution<double> exponential(1.5);
auto combiner = [=](const double& a, const double& b){
auto mutation = (rand() % 2 ? -1 : 1) * exponential(random_engine);
if (exponential(random_engine) < 1) {
return .6 * a + .4 * b + mutation;
}
return (rand() % 2 ? a : b) + mutation;
};
unsigned first, second;
for (int i = 0; i < diff; i++) {
first = distribution(random_engine);
do { second = distribution(random_engine); } while (first == second);
auto combined = trainees[first]->decider.combine(trainees[second]->decider, combiner);
std::cout << "Łączenie #" << trainees[first]->id << " z #" << trainees[second]->id << " dało #" << (id+1) << std::endl;
add(combined);
}
}
void see_best(std::istream& stream)
{
std::shared_ptr<trained<T>> trainee = this->trainees[0];
std::cout << "price,decision" << std::endl;
double price;
trainee->monies = money;
trainee->stock = stock;
trainee->decider.reset();
while (stream >> price) {
int decision = train(trainee, price);
std::cout << price << "," << decision << std::endl;
}
}
};