MNP01/wtf.cpp
2018-03-11 12:48:48 +01:00

53 lines
1.4 KiB
C++

#include <iostream>
#include <functional>
#include <math.h>
#include <typeinfo>
#include <random>
#include <ctime>
#include <algorithm>
#include <vector>
#include "argh.h"
#include "matrix.h"
#include "network.h"
#include "decider.h"
#include "trainer.h"
int main(int argc, char* argv[])
{
argh::parser args;
args.add_params({"-m", "--money"});
args.add_params({"-s", "--stock"});
args.add_params({"-p", "--population"});
args.parse(argc, argv);
double money;
unsigned stock, population;
args({ "m", "money" }, 1000.) >> money;
args({ "s", "stock" }, 1000) >> stock;
args({ "p", "population" }, 25) >> population;
std::uniform_real_distribution<double> distribution(-1.0, 1.0);
std::default_random_engine random_engine;
random_engine.seed(std::time(0));
std::function<double(const int&, const int&)> randomizer = [&](const int& i, const int& j) -> double {
return distribution(random_engine);
};
std::function<double(const double&)> normalizer = [](const double& result) -> double { return erf(result); };
using current_decider = neural_decider<24, 12, 12, 32, 16>;
std::function<current_decider()> factory = [&]() -> current_decider {
current_decider decider(normalizer);
decider.network.fill(randomizer);
return decider;
};
trainer<current_decider> train(money, stock, population, factory);
train.test(std::cin);
}