MNP01/trainer.h
2018-03-15 19:36:40 +01:00

223 lines
6.5 KiB
C++

#include <vector>
#include <random>
#include <ctime>
#include <functional>
#include <iostream>
#include <algorithm>
#include <memory>
#include <string>
template<class T>
struct trained {
unsigned id;
unsigned position;
double score;
T decider;
};
template <class T>
class trainer {
std::vector<std::shared_ptr<trained<T>>> trainees;
std::function<T()> factory;
unsigned int id;
std::default_random_engine random_engine;
std::size_t n;
public:
using dataset = std::vector<double>;
double money;
unsigned stock;
unsigned int generation;
std::function<double(std::shared_ptr<trained<T>>, const dataset&, double, unsigned)> q;
trainer(double money, unsigned stock, std::size_t n, std::function<T()> factory)
: factory(factory), id(0), generation(1), money(money), stock(stock), n(n), random_engine(std::time(0))
{
this->q = [=](std::shared_ptr<trained<T>> x, const dataset& input, double money, unsigned stock) {
return (money + stock * input.back()) / (this->money + this->stock * input.front()); };
add(n);
}
void add(std::size_t n, std::function<T()> factory)
{
for(std::size_t i = 0; i < n; i++) {
add(factory());
}
}
void add(std::size_t n)
{
add(n, factory);
}
void add(const T& decider)
{
auto trainee = std::make_shared<trained<T>>();
trainee->id = ++id;
trainee->decider = decider;
trainees.push_back(trainee);
}
void evolve()
{
sort();
filter();
breed();
// cleanup before next training sessions
for (auto t : trainees) {
t->score = 0;
}
}
void train(const dataset& input, std::shared_ptr<trained<T>> trainee)
{
trainee->decider.start_money = money;
trainee->decider.start_stock = stock;
trainee->decider.reset(input.front());
double money = this->money;
unsigned stock = this->stock;
for (double price : input) {
auto decision = trainee->decider.decide(price, money, stock);
auto current = price * stock + money;
auto max_credit = std::max(current * 0.05, -1e4);
if (decision < 0) {
decision = std::max<int>(decision, -stock); // cannot sell more than we actually have
} else if (decision > 0) {
decision = std::min<int>(floor((money + max_credit) / price), decision);
}
money -= price * decision;
stock += decision;
}
trainee->score += q(trainee, input, money, stock);
auto last = input.back();
auto first = input.front();
auto wealth = money + stock * last;
auto hodl = this->money + this->stock * last;
auto start = this->money + this->stock * first;
std::cout
<< "#" << trainee->id << ": " << wealth
<< std::showpos
<< " H: " << wealth - hodl << " (" << (wealth - hodl) / hodl * 100 << "%)"
<< " S: " << wealth - start << " (" << (wealth - start) / start * 100 << "%) "
<< std::noshowpos
<< stock << " akcji, "
<< money << " gelda w banku. "
<< std::endl;
}
void train(const dataset& input, const std::string& name)
{
std::cout << "Zestaw " << name
<< " GEN #" << this->generation
<< " start: " << money + input.front() * stock
<< " HODL: " << money + input.back() * stock
<< std::endl;
for (auto trainee : trainees) {
train(input, trainee);
}
}
void sort()
{
std::sort(trainees.begin(), trainees.end(), [=](std::shared_ptr<trained<T>> a, std::shared_ptr<trained<T>> b){
return a->score > b->score;
});
unsigned i = 0;
for (auto t : trainees) {
t->position = i++;
}
}
void filter()
{
static std::uniform_real_distribution<double> distribution(0.0, 1.0);
auto random = [=](){ return distribution(random_engine); };
auto iterator = std::remove_if(trainees.begin(), trainees.end(), [&](std::shared_ptr<trained<T>> t) {
return random() < (double)t->position / n;
});
trainees.erase(iterator, std::end(trainees));
std::cout << "Przy życiu pozostają: ";
for (auto trainee : trainees) {
std::cout << "#" << trainee->id << " (" << trainee->position << ") ";
}
}
void breed()
{
std::size_t diff = n - trainees.size();
std::cout << "W populacji brakuje " << diff << " sieci, aktualnie " << trainees.size() << "." << std::endl;
std::vector<double> probability;
for (auto t : trainees) {
probability.push_back(t->score);
}
std::discrete_distribution<unsigned> distribution(probability.begin(), probability.end());
std::exponential_distribution<double> exponential(1.5);
std::uniform_real_distribution<double> ratio(0.0, 1.0);
auto combiner = [=](const double& a, const double& b){
if (exponential(random_engine) < 1) {
auto r = ratio(random_engine);
return r * a + (1 - r) * b;
}
return rand() % 2 ? a : b;
};
auto mutator = [=](const double& a) {
auto mutation = (rand() % 2 ? -1 : 1) * exponential(random_engine);
return a + mutation;
};
std::size_t to_combine = diff * 0.4, to_mutate = diff * 0.4;
unsigned first, second;
for (int i = 0; i < to_combine; i++) {
first = distribution(random_engine);
do { second = distribution(random_engine); } while (first == second);
auto combined = trainees[first]->decider.combine(trainees[second]->decider, combiner).mutate(mutator);
std::cout << "Łączenie #" << trainees[first]->id << " z #" << trainees[second]->id << " dało #" << (id+1) << std::endl;
add(combined);
}
for (int i = 0; i < to_mutate; i++) {
first = distribution(random_engine);
std::cout << "Mutowanie #" << trainees[first]->id << " w #" << id+1 << std::endl;
add(trainees[first]->decider.mutate(mutator));
}
add(diff - to_combine - to_mutate); // some random things
generation++;
}
std::vector<std::shared_ptr<trained<T>>> population() {
return trainees;
}
};