MNP01/wtf.cpp
2018-03-15 19:36:40 +01:00

108 lines
3.2 KiB
C++

#include <iostream>
#include <functional>
#include <math.h>
#include <typeinfo>
#include <random>
#include <ctime>
#include <algorithm>
#include <fstream>
#include <vector>
#include <map>
#include "argh.h"
#include "matrix.h"
#include "network.h"
#include "decider.h"
#include "trainer.h"
#include "common.h"
int main(int argc, char* argv[])
{
argh::parser args;
args.add_params({"-m", "--money"});
args.add_params({"-s", "--stock"});
args.add_params({"-p", "--population"});
args.add_params({"-n", "--iterations"});
args.add_params({"-o", "--output-dir"});
args.parse(argc, argv);
double money;
unsigned stock, population, iterations;
std::string input_file, output_dir;
args({ "m", "money" }, 1000.) >> money;
args({ "s", "stock" }, 1000) >> stock;
args({ "p", "population" }, 25) >> population;
args({ "n", "iterations" }, 4) >> iterations;
args({ "o", "output-dir" }, "") >> output_dir;
std::uniform_real_distribution<double> distribution(-2.0, 2.0);
std::uniform_real_distribution<double> bias_distribution(-16.0, 16.0);
std::random_device rd;
std::mt19937 random_engine(rd());
std::function<double(const int&, const int&)> randomizer = [&](const int&, const int&) -> double {
return distribution(random_engine);
};
std::function<double(const int&, const int&)> bias_randomizer = [&](const int&, const int&) -> double {
return distribution(random_engine);
};
std::function<double(const double&)> normalizer = [](const double& result) -> double { return erf(result); };
std::function<current_decider ()> factory = [&]() -> current_decider {
current_decider decider(normalizer);
decider.network.fill(randomizer, bias_randomizer);
return decider;
};
trainer<current_decider> train(money, stock, population, factory);
std::fstream input;
std::map<std::string, trainer<current_decider>::dataset> datasets;
for (auto it = args.begin() + 1; it != args.end(); it++) {
std::string filename = *it;
std::ifstream file;
file.open(filename);
if (!file.is_open()) continue;
trainer<current_decider>::dataset set;
double price;
while (file >> price) set.push_back(price);
datasets[filename] = set;
file.close();
std::cout << "Zaladowano zestaw testowy " << filename << " z " << set.size() << " wartosciami." << std::endl;
}
if (datasets.size() == 0) {
std::cout << "Brak poprawnie zaladowanych zestawow testowych." << std::endl;
return -1;
}
while (train.generation <= iterations) {
for (auto pair : datasets) {
train.train(pair.second, pair.first);
}
train.evolve();
}
if (!output_dir.empty()) {
for (auto trained : train.population()) {
std::stringstream stream;
stream << output_dir << trained->id << ".net";
std::string filename = stream.str();
std::cout << "Zapisuje siec #" << trained->id << " do pliku " << filename << std::endl;
std::ofstream file(filename, std::ios::out | std::ios::binary);
trained->decider.save(file);
file.close();
}
}
}