This commit is contained in:
Kacper Donat 2018-05-02 23:29:41 +02:00
parent fc1e5a7e8d
commit af9dfe6f8c
4 changed files with 216 additions and 13 deletions

18
Makefile Normal file
View File

@ -0,0 +1,18 @@
cpp=cl
link=link
cppflags=/EHsc /std:c++latest /nologo /O2
linkflags=/nologo
all: solver.exe
.cpp.obj:
$(cpp) /c $(cppdebug) $(cppflags) $(cppvars) $*.cpp
solver.exe: main.obj
$(link) $(ldebug) $(conflags) /out:$@ $** $(conlibs)
clean:
del *.obj
del *.lst
del *.exe

View File

@ -1,10 +1,12 @@
#include "matrix.h"
#include "solver.h"
#include <iostream>
#include <utility>
const size_t N = 10;
std::pair<Matrix<double>, Matrix<double>> prepare(size_t index, size_t n) {
std::pair<Matrix<double>, Matrix<double>> prepare(size_t index, size_t n)
{
double a1, a2, a3;
a2 = a3 = -1;
a1 = 5 + (index / 100) % 10;
@ -21,9 +23,23 @@ std::pair<Matrix<double>, Matrix<double>> prepare(size_t index, size_t n) {
return std::make_pair(M, b);
}
int main(int argc, const char argv[])
int main(int argc, const char* argv[])
{
auto tuple = prepare(165581, N);
auto M = std::get<0>(tuple);
auto b = std::get<1>(tuple);
}
JacobiSolver jacobi;
std::cout << jacobi.solve(M, b);
GaussSolver gauss;
std::cout << gauss.solve(M, b);
LUSolver lu;
auto pair = LUSolver::decompose(M);
auto L = std::get<0>(pair);
auto U = std::get<1>(pair);
std::cout << lu.solve(L, U, b);
}

View File

@ -29,11 +29,14 @@ public:
T& operator()(size_t n, size_t m);
T operator()(size_t n, size_t m) const;
self_t operator*(const self_t& rhs);
self_t operator+(const self_t& rhs);
self_t operator*(const self_t& rhs) const;
self_t operator+(const self_t& rhs) const;
self_t operator*(T rhs);
self_t operator+(T rhs);
self_t operator*(T rhs) const;
self_t operator+(T rhs) const;
self_t operator-() const;
self_t operator-(const self_t& rhs) const;
self_t& operator=(self_t&& rhs) noexcept;
@ -75,7 +78,7 @@ T Matrix<T>::operator()(size_t n, size_t m) const {
}
template<typename T>
Matrix<T> Matrix<T>::operator+(const Matrix<T> &rhs) {
Matrix<T> Matrix<T>::operator+(const Matrix<T> &rhs) const {
assert(this->_cols == rhs._cols && this->_rows == rhs._rows);
self_t result(this->_rows, this->_cols);
@ -87,7 +90,7 @@ Matrix<T> Matrix<T>::operator+(const Matrix<T> &rhs) {
}
template<typename T>
Matrix<T> Matrix<T>::operator*(const Matrix<T> &rhs) {
Matrix<T> Matrix<T>::operator*(const Matrix<T> &rhs) const {
assert(_cols == rhs._rows);
self_t result(_rows, rhs._cols);
@ -105,23 +108,40 @@ Matrix<T> Matrix<T>::operator*(const Matrix<T> &rhs) {
}
template<typename T>
Matrix<T> Matrix<T>::operator*(const T rhs) {
Matrix<T> Matrix<T>::operator-() const {
self_t result(*this);
return result * -1;
}
template<typename T>
Matrix<T> Matrix<T>::operator-(const Matrix<T>& rhs) const {
self_t result(*this);
for (size_t i = 0; i < _rows; i++)
for (size_t j = 0; j < _cols; j++)
result(i, j) *= rhs;
result(i, j) -= rhs(i, j);
return result;
}
template<typename T>
Matrix<T> Matrix<T>::operator+(const T rhs) {
Matrix<T> Matrix<T>::operator*(const T rhs) const {
self_t result(*this);
for (size_t i = 0; i < _rows; i++)
for (size_t j = 0; j < _cols; j++)
result(i, j) += rhs;
result(i, j) *= rhs(i, j);
return result;
}
template<typename T>
Matrix<T> Matrix<T>::operator+(const T rhs) const {
self_t result(*this);
for (size_t i = 0; i < _rows; i++)
for (size_t j = 0; j < _cols; j++)
result(i, j) += rhs(i, j);
return result;
}

149
solver.h Normal file
View File

@ -0,0 +1,149 @@
#ifndef P02_SOLVER_H
#define P02_SOLVER_H
#include "matrix.h"
template <typename T>
double residuum(const Matrix<T>& M, const Matrix<T>& b, const Matrix<T>& x)
{
return norm(M*x - b);
}
class Solver {
public:
virtual Matrix<double> solve(const Matrix<double>& M, const Matrix<double>& b) = 0;
};
class LUSolver : public Solver {
public:
static std::pair<Matrix<double>, Matrix<double>> decompose(const Matrix<double>& M);
Matrix<double> solve(const Matrix<double>& L, const Matrix<double>& U, const Matrix<double>& b);
Matrix<double> solve(const Matrix<double>& M, const Matrix<double>& b) override;
};
class IterativeSolver : public Solver {
protected:
double error;
public:
IterativeSolver();
IterativeSolver(double error);
virtual Matrix<double> iteration(const Matrix<double>& M, const Matrix<double>& b, const Matrix<double>& old) = 0;
virtual Matrix<double> solve(const Matrix<double>& M, const Matrix<double>& b) override;
};
class JacobiSolver : public IterativeSolver {
public:
using IterativeSolver::IterativeSolver;
virtual Matrix<double> iteration(const Matrix<double>& M, const Matrix<double>& b, const Matrix<double>& old) override;
};
class GaussSolver : public IterativeSolver {
public:
using IterativeSolver::IterativeSolver;
virtual Matrix<double> iteration(const Matrix<double>& M, const Matrix<double>& b, const Matrix<double>& old) override;
};
Matrix<double> IterativeSolver::solve(const Matrix<double>& M, const Matrix<double>& b)
{
assert(M.rows() == M.cols());
assert(b.rows() == M.cols());
size_t n = M.cols();
Matrix<double> x(n, 1);
for (size_t i = 0; i < n; ++i) x(i, 0) = 1.;
size_t iterations = 0;
while(residuum(M, b, x) > error) {
x = iteration(M, b, x);
iterations ++;
}
return x;
}
IterativeSolver::IterativeSolver() : error(1e-9) {}
IterativeSolver::IterativeSolver(double error) : error(error) {}
Matrix<double> JacobiSolver::iteration(const Matrix<double>& M, const Matrix<double>& b, const Matrix<double>& old)
{
Matrix<double> x(b.rows(), 1);
for (size_t i = 0; i < b.rows(); ++i) {
double t = b(i, 0);
for (size_t j = 0; j < b.rows(); ++j) {
if (j == i) continue;
t -= M(i, j)*old(j, 0);
}
x(i, 0) = t / M(i,i);
}
return x;
}
Matrix<double> GaussSolver::iteration(const Matrix<double>& M, const Matrix<double>& b, const Matrix<double>& old)
{
Matrix<double> x(b.rows(), 1);
for (size_t i = 0; i < b.rows(); ++i) {
double t = b(i, 0);
for (size_t j = 0; j < i; ++j)
t -= M(i, j)*x(j, 0);
for (size_t j = i+1; j < b.rows(); ++j)
t -= M(i, j)*old(j, 0);
x(i, 0) = t / M(i,i);
}
return x;
}
Matrix<double> LUSolver::solve(const Matrix<double>& M, const Matrix<double>& b)
{
auto LU = LUSolver::decompose(M);
return this->solve(std::get<0>(LU), std::get<1>(LU), b);
}
Matrix<double> LUSolver::solve(const Matrix<double>& L, const Matrix<double>& U, const Matrix<double>& b)
{
Matrix<double> x(b);
const size_t n = x.rows();
for (size_t i = 0; i < n; i++) {
for (size_t j = 0; j < i; j++) {
x(i, 0) -= L(i,j)*x(j, 0);
}
}
for (size_t i = n; i != 0; i--) {
for (size_t j = n-1; j > i-1; j--) {
x(i-1, 0) -= U(i-1,j)*x(j, 0);
}
x(i-1, 0) /= U(i-1,i-1);
}
return x;
}
std::pair<Matrix<double>, Matrix<double>> LUSolver::decompose(const Matrix<double>& M)
{
const size_t n = M.rows();
Matrix<double> U(M);
Matrix<double> L = Matrix<double>::diag(n, 1);
for (size_t i = 0; i < n - 1; ++i) {
for (size_t j = i+1; j < n; ++j) {
L(j, i) = U(j, i) / U(i, i);
for (size_t k = i; k < n; k++) {
U(j, k) -= L(j, i)*U(i, k);
}
}
}
return std::make_pair(L, U);
}
#endif