#ifndef P02_SOLVER_H #define P02_SOLVER_H #include "matrix.h" template double residuum(const Matrix& M, const Matrix& b, const Matrix& x) { return norm(M*x - b); } class Solver { public: virtual Matrix solve(const Matrix& M, const Matrix& b) = 0; }; class LUSolver : public Solver { public: static std::pair, Matrix> decompose(const Matrix& M); Matrix solve(const Matrix& L, const Matrix& U, const Matrix& b); Matrix solve(const Matrix& M, const Matrix& b) override; }; class IterativeSolver : public Solver { protected: double error; size_t _iterations; std::ostream* csv; public: IterativeSolver(); IterativeSolver(double error); virtual Matrix iteration(const Matrix& M, const Matrix& b, const Matrix& old) = 0; virtual Matrix solve(const Matrix& M, const Matrix& b) override; size_t iterations() const; void output(std::ostream* csv); }; class JacobiSolver : public IterativeSolver { public: using IterativeSolver::IterativeSolver; virtual Matrix iteration(const Matrix& M, const Matrix& b, const Matrix& old) override; }; class GaussSolver : public IterativeSolver { public: using IterativeSolver::IterativeSolver; virtual Matrix iteration(const Matrix& M, const Matrix& b, const Matrix& old) override; }; Matrix IterativeSolver::solve(const Matrix& M, const Matrix& b) { assert(M.rows() == M.cols()); assert(b.rows() == M.cols()); size_t n = M.cols(); Matrix x(n, 1); for (size_t i = 0; i < n; ++i) x(i, 0) = 1.; _iterations = 0; double r; if (csv) *csv << "iter,residuum" << std::endl; while((r = residuum(M, b, x)) > error) { x = iteration(M, b, x); if (csv) *csv << iterations() << "," << r << std::endl; _iterations ++; if (_iterations >= 100) { std::cerr << "Giving up after " << _iterations << " iteration, residuum: " << r << std::endl; return x; } } return x; } void IterativeSolver::output(std::ostream* stream) { this->csv = stream; } size_t IterativeSolver::iterations() const { return _iterations; } IterativeSolver::IterativeSolver() : IterativeSolver(1e-9) {} IterativeSolver::IterativeSolver(double error) : error(error), csv(nullptr) {} Matrix JacobiSolver::iteration(const Matrix& M, const Matrix& b, const Matrix& old) { Matrix x(b.rows(), 1); for (size_t i = 0; i < b.rows(); ++i) { double t = b(i, 0); for (size_t j = 0; j < b.rows(); ++j) { if (j == i) continue; t -= M(i, j)*old(j, 0); } x(i, 0) = t / M(i,i); } return x; } Matrix GaussSolver::iteration(const Matrix& M, const Matrix& b, const Matrix& old) { Matrix x(b.rows(), 1); for (size_t i = 0; i < b.rows(); ++i) { double t = b(i, 0); for (size_t j = 0; j < i; ++j) t -= M(i, j)*x(j, 0); for (size_t j = i+1; j < b.rows(); ++j) t -= M(i, j)*old(j, 0); x(i, 0) = t / M(i,i); } return x; } Matrix LUSolver::solve(const Matrix& M, const Matrix& b) { auto LU = LUSolver::decompose(M); return this->solve(std::get<0>(LU), std::get<1>(LU), b); } Matrix LUSolver::solve(const Matrix& L, const Matrix& U, const Matrix& b) { Matrix x(b); const size_t n = x.rows(); for (size_t i = 0; i < n; i++) { for (size_t j = 0; j < i; j++) { x(i, 0) -= L(i,j)*x(j, 0); } } for (size_t i = n; i != 0; i--) { for (size_t j = n-1; j > i-1; j--) { x(i-1, 0) -= U(i-1,j)*x(j, 0); } x(i-1, 0) /= U(i-1,i-1); } return x; } std::pair, Matrix> LUSolver::decompose(const Matrix& M) { const size_t n = M.rows(); Matrix U(M); Matrix L = Matrix::diag(n, 1); for (size_t i = 0; i < n - 1; ++i) { for (size_t j = i+1; j < n; ++j) { L(j, i) = U(j, i) / U(i, i); for (size_t k = i; k < n; k++) { U(j, k) -= L(j, i)*U(i, k); } } } return std::make_pair(L, U); } #endif