ProjektSI/gan.py
2018-05-04 21:59:56 +02:00

241 lines
9.4 KiB
Python

import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import utils
import csv
import os
from dataset import get_dataloader
from torch.autograd import Variable
def add_conv_layer(conv, input_dim, output_dim, kernel=4, activation=True, batch_norm=True, dropout=False):
layer = []
layer.append(nn.Conv2d(input_dim, output_dim, kernel))
if batch_norm:
layer.append(nn.BatchNorm2d(output_dim))
if activation:
layer.append(nn.LeakyReLU(0.2))
if dropout:
layer.append(nn.Dropout2d())
conv.append(nn.Sequential(*layer))
def add_deconv_layer(deconv, input_dim, output_dim, kernel=4, activation=True, batch_norm=True, dropout=False):
layer = []
if activation:
layer.append(nn.LeakyReLU(0.2))
layer.append(nn.ConvTranspose2d(input_dim, output_dim, kernel))
if batch_norm:
layer.append(nn.BatchNorm2d(output_dim))
if dropout:
layer.append(nn.Dropout2d())
deconv.append(nn.Sequential(*layer))
class Generator(nn.Module):
def __init__(self, input_width=178, input_height=218, input_dim=3, num_features=32, output_dim=3, lr=0.0002):
super(Generator, self).__init__()
self.input_width = input_width
self.input_height = input_height
self.input_dim = input_dim
self.num_features = num_features
self.output_dim = output_dim
self.lr = lr # bo tak
self.n = 4
self.conv = []
add_conv_layer(self.conv, self.input_dim, self.num_features, activation=False, batch_norm = False)
add_conv_layer(self.conv, self.num_features, self.num_features * 2)
add_conv_layer(self.conv, self.num_features * 2, self.num_features * 4)
add_conv_layer(self.conv, self.num_features * 4, self.num_features * 8, batch_norm = False)
self.deconv = []
add_deconv_layer(self.conv, self.num_features * 8, self.num_features * 4, dropout = True)
add_deconv_layer(self.conv, self.num_features * 4, self.num_features * 2)
add_deconv_layer(self.conv, self.num_features * 2, self.num_features)
add_deconv_layer(self.conv, self.num_features, self.output_dim, batch_norm = False)
self.conv = nn.Sequential(*self.conv)
self.deconv = nn.Sequential(*self.deconv)
utils.initialize_weights(self)
def forward(self, x):
x = self.conv(x)
x = self.deconv(x)
""" # To miał← być skip connections, ale nie działa.
conv = [self.conv[0](x)]
for i in range(1, len(self.conv)):
print(i)
conv.append(self.conv[i](conv[-1]))
deconv = [self.deconv[0](conv[-1])]
for i in range(1, len(self.deconv)-1):
print(i)
deconv.append(self.deconv[i](deconv[-1]))
#deconv[-1] = torch.cat((deconv[-1], conv[-1-i]), 1)
deconv.append(self.deconv[-1](deconv[-1]))
"""
x = nn.Tanh()(x) # może i Sigmoid, ale wtedy są dziwne przekolorowana
return x
class Discriminator(nn.Module):
def __init__(self, input_width=178, input_height=218, input_dim=1, num_features=32, output_dim=3, lr=0.0002):
super(Discriminator, self).__init__()
self.input_width = input_width
self.input_height = input_height
self.input_dim = input_dim
self.num_features = num_features
self.output_dim = output_dim
self.lr = lr
self.conv = []
add_conv_layer(self.conv, self.input_dim, self.num_features, activation=False, batch_norm = False)
add_conv_layer(self.conv, self.num_features, self.num_features * 2)
add_conv_layer(self.conv, self.num_features * 2, self.num_features * 4)
add_conv_layer(self.conv, self.num_features * 4, self.num_features * 8)
add_conv_layer(self.conv, self.num_features * 8, self.output_dim, batch_norm = False)
#self.conv.append(nn.Linear(self.num_features * 8, self.output_dim))
self.conv = nn.Sequential(*self.conv)
utils.initialize_weights(self)
def forward(self, x):
x = self.conv(x)
x = nn.Sigmoid()(x) # bo musi być w <0;1>
return x
if __name__ == '__main__':
EPOCHS = 5
CUDA = False
NUM_FEATURES = 16
LAMBDA = 100
output_path = "output"
if not os.path.exists(output_path):
os.makedirs(output_path)
loss_path = os.path.join(output_path, "loss", "loss_epoch_{}.csv")
if not os.path.exists(os.path.dirname(loss_path)):
os.makedirs(os.path.dirname(loss_path))
model_path = os.path.join(output_path, "model", "gan_epoch_{}.pt")
if not os.path.exists(os.path.dirname(model_path)):
os.makedirs(os.path.dirname(model_path))
torch.manual_seed(1)
G = Generator(input_width=178, input_height=218, input_dim=3, num_features=NUM_FEATURES, output_dim=3, lr=0.0002)
D = Discriminator(input_width=178, input_height=218, input_dim=3, num_features=NUM_FEATURES, output_dim=1, lr=0.0002)
print("Generator:\n", G)
print("Discriminator:\n", D)
BCE_loss = nn.BCELoss() # nie działa, przyjmuje inputy tylko z zakresu <0; 1>
L1_loss = nn.L1Loss() # działa, ale rozmyte
L2_loss = nn.KLDivLoss() # działa, ale wolne
MSE_loss = nn.MSELoss() # działa, ale jakieś dziwne przekolorwania (chociaż zdają się zanikać)
G_optimizer = optim.Adam(G.parameters(), G.lr)
D_optimizer = optim.Adam(D.parameters(), D.lr)
if CUDA: # u mnie nie działa
G.cuda()
D.cuda()
BCE_loss.cuda()
L1_loss.cuda()
trainloader = get_dataloader()
test_ok, test_damaged = trainloader.__iter__().__next__()
#loss_mean, loss_std = [], []
def get_real_estimate(size):
return Variable(torch.ones(size))
def get_fake_estimate(size):
return Variable(torch.zeros(size))
# https://github.com/soumith/ganhacks
# Label smoothing: duże rozmycie spowalnia zbieganie D_loss do zera.
def get_smooth_real_estimate(size):
return Variable(torch.ones(size)) * (0.7 + torch.rand(1)[0]*0.5)
def get_smooth_fake_estimate(size):
return Variable(torch.ones(size)) * (torch.rand(1)[0]*0.3)
for epoch in range(1, EPOCHS+1, 1):
losses = []
for i, (ok_image, damaged_image) in enumerate(trainloader):
ok_image, damaged_image = Variable(ok_image), Variable(damaged_image)
print(ok_image.size())
# TODO: jakieś if'y wykrywające wyglebywanie się GAN-a i zezwalające
# naukę tylko D albo G ?
# nauka dyskryminacji
D_optimizer.zero_grad()
print(1)
D_real_estimate = D(ok_image)
real_estimate = get_smooth_real_estimate(D_real_estimate.size())
print (real_estimate.size())
D_real_loss = BCE_loss(D_real_estimate, real_estimate)
#D_real_loss.backward()
print(2)
generated_image = G(damaged_image).detach()
D_fake_estimate = D(generated_image)
fake_estimate = get_smooth_fake_estimate(D_fake_estimate.size())
D_fake_loss = BCE_loss(D_fake_estimate, fake_estimate)
#D_fake_loss.backward()
print(3)
D_loss = D_real_loss + D_fake_loss
D_loss.backward()
D_optimizer.step()
print(4)
# nauka generacji
G_optimizer.zero_grad()
generated_image = G(damaged_image)
estimate = D(generated_image)
G_fake_loss = BCE_loss(estimate, get_real_estimate(estimate.size()))
G_L1_loss = LAMBDA * L1_loss(generated_image, ok_image)
# ogólnie im większa lambda, tym zachowuje się bardziej jak DCNN i
# bardziej zachowuje ogólną kolorystykę
G_loss = G_fake_loss + G_L1_loss
G_loss.backward()
G_optimizer.step()
print(5)
#losses.append((D_loss.data[0], G_loss.data[0]))
#loss = L1_loss(generated_image, ok_image)
#loss = BCE_loss(generated_image, ok_image)
#loss = used_loss(generated_image, ok_image)
#loss.backward()
#losses.append(loss.data[0])
#G_optimizer.step()
print('Epoch: {} [{}/{} ({:.0f}%)]\tD_loss: {:.6f}\tG_loss: {:.6f}'.format(
epoch, (i + 1) * len(ok_image), len(trainloader.dataset),
100. * i / len(trainloader), D_loss.data[0], G_loss.data[0]))
#loss_mean.append(np.mean(losses))
#loss_std.append(np.std(losses))
with open(loss_path.format(epoch), 'w') as csvfile:
fieldnames = ['num_image', 'd_loss', 'g_loss']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for i, (d_loss, g_loss) in enumerate(losses):
writer.writerow({'num_image': i, 'd_loss': d_loss, 'g_loss': g_loss})
if True or epoch == 1 or epoch % 5 == 0:
torch.save(G.state_dict(), model_path.format(epoch))
generated_image = G(Variable(test_damaged))
generated_image = generated_image.data
utils.plot_images(test_damaged, test_ok, generated_image)
#utils.plot_loss(loss_mean, loss_std)