174 lines
4.5 KiB
C++
174 lines
4.5 KiB
C++
#ifndef P02_SOLVER_H
|
|
#define P02_SOLVER_H
|
|
|
|
#include "matrix.h"
|
|
|
|
template <typename T>
|
|
double residuum(const Matrix<T>& M, const Matrix<T>& b, const Matrix<T>& x)
|
|
{
|
|
return norm(M*x - b);
|
|
}
|
|
|
|
class Solver {
|
|
public:
|
|
virtual Matrix<double> solve(const Matrix<double>& M, const Matrix<double>& b) = 0;
|
|
};
|
|
|
|
class LUSolver : public Solver {
|
|
public:
|
|
static std::pair<Matrix<double>, Matrix<double>> decompose(const Matrix<double>& M);
|
|
Matrix<double> solve(const Matrix<double>& L, const Matrix<double>& U, const Matrix<double>& b);
|
|
Matrix<double> solve(const Matrix<double>& M, const Matrix<double>& b) override;
|
|
};
|
|
|
|
class IterativeSolver : public Solver {
|
|
protected:
|
|
double error;
|
|
size_t _iterations;
|
|
std::ostream* csv;
|
|
|
|
public:
|
|
IterativeSolver();
|
|
IterativeSolver(double error);
|
|
|
|
virtual Matrix<double> iteration(const Matrix<double>& M, const Matrix<double>& b, const Matrix<double>& old) = 0;
|
|
virtual Matrix<double> solve(const Matrix<double>& M, const Matrix<double>& b) override;
|
|
|
|
size_t iterations() const;
|
|
void output(std::ostream* csv);
|
|
};
|
|
|
|
class JacobiSolver : public IterativeSolver {
|
|
public:
|
|
using IterativeSolver::IterativeSolver;
|
|
virtual Matrix<double> iteration(const Matrix<double>& M, const Matrix<double>& b, const Matrix<double>& old) override;
|
|
};
|
|
|
|
class GaussSolver : public IterativeSolver {
|
|
public:
|
|
using IterativeSolver::IterativeSolver;
|
|
virtual Matrix<double> iteration(const Matrix<double>& M, const Matrix<double>& b, const Matrix<double>& old) override;
|
|
};
|
|
|
|
Matrix<double> IterativeSolver::solve(const Matrix<double>& M, const Matrix<double>& b)
|
|
{
|
|
assert(M.rows() == M.cols());
|
|
assert(b.rows() == M.cols());
|
|
|
|
size_t n = M.cols();
|
|
|
|
Matrix<double> x(n, 1);
|
|
for (size_t i = 0; i < n; ++i) x(i, 0) = 1.;
|
|
|
|
_iterations = 0;
|
|
double r;
|
|
if (csv) *csv << "iter,residuum" << std::endl;
|
|
while((r = residuum(M, b, x)) > error) {
|
|
x = iteration(M, b, x);
|
|
if (csv) *csv << iterations() << "," << r << std::endl;
|
|
|
|
_iterations ++;
|
|
if (_iterations >= 100) {
|
|
std::cerr << "Giving up after " << _iterations << " iteration, residuum: " << r << std::endl;
|
|
return x;
|
|
}
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
void IterativeSolver::output(std::ostream* stream)
|
|
{
|
|
this->csv = stream;
|
|
}
|
|
|
|
size_t IterativeSolver::iterations() const
|
|
{
|
|
return _iterations;
|
|
}
|
|
|
|
IterativeSolver::IterativeSolver() : IterativeSolver(1e-9) {}
|
|
IterativeSolver::IterativeSolver(double error) : error(error), csv(nullptr) {}
|
|
|
|
Matrix<double> JacobiSolver::iteration(const Matrix<double>& M, const Matrix<double>& b, const Matrix<double>& old)
|
|
{
|
|
Matrix<double> x(b.rows(), 1);
|
|
|
|
for (size_t i = 0; i < b.rows(); ++i) {
|
|
double t = b(i, 0);
|
|
for (size_t j = 0; j < b.rows(); ++j) {
|
|
if (j == i) continue;
|
|
t -= M(i, j)*old(j, 0);
|
|
}
|
|
|
|
x(i, 0) = t / M(i,i);
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
Matrix<double> GaussSolver::iteration(const Matrix<double>& M, const Matrix<double>& b, const Matrix<double>& old)
|
|
{
|
|
Matrix<double> x(b.rows(), 1);
|
|
|
|
for (size_t i = 0; i < b.rows(); ++i) {
|
|
double t = b(i, 0);
|
|
|
|
for (size_t j = 0; j < i; ++j)
|
|
t -= M(i, j)*x(j, 0);
|
|
for (size_t j = i+1; j < b.rows(); ++j)
|
|
t -= M(i, j)*old(j, 0);
|
|
|
|
x(i, 0) = t / M(i,i);
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
Matrix<double> LUSolver::solve(const Matrix<double>& M, const Matrix<double>& b)
|
|
{
|
|
auto LU = LUSolver::decompose(M);
|
|
return this->solve(std::get<0>(LU), std::get<1>(LU), b);
|
|
}
|
|
|
|
Matrix<double> LUSolver::solve(const Matrix<double>& L, const Matrix<double>& U, const Matrix<double>& b)
|
|
{
|
|
Matrix<double> x(b);
|
|
const size_t n = x.rows();
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
for (size_t j = 0; j < i; j++) {
|
|
x(i, 0) -= L(i,j)*x(j, 0);
|
|
}
|
|
}
|
|
|
|
for (size_t i = n; i != 0; i--) {
|
|
for (size_t j = n-1; j > i-1; j--) {
|
|
x(i-1, 0) -= U(i-1,j)*x(j, 0);
|
|
}
|
|
x(i-1, 0) /= U(i-1,i-1);
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
std::pair<Matrix<double>, Matrix<double>> LUSolver::decompose(const Matrix<double>& M)
|
|
{
|
|
const size_t n = M.rows();
|
|
|
|
Matrix<double> U(M);
|
|
Matrix<double> L = Matrix<double>::diag(n, 1);
|
|
|
|
for (size_t i = 0; i < n - 1; ++i) {
|
|
for (size_t j = i+1; j < n; ++j) {
|
|
L(j, i) = U(j, i) / U(i, i);
|
|
for (size_t k = i; k < n; k++) {
|
|
U(j, k) -= L(j, i)*U(i, k);
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::make_pair(L, U);
|
|
}
|
|
#endif
|